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Abstract
We present conductivity measurements of quasicrystalline AlPdRe ribbons in
a wide range of temperature (20 mK–300 K), for icosahedral samples spanning
a broad resistivity range (R = ρ4 K/ρ300 K from 2 to 209). We focus here on a
detailed analysis of the temperature dependence of the conductivity σ(T ) for
the insulating samples (R > 16). Three successive regimes are revealed as the
temperature is increased to 300 K: a low temperature variable range hopping-
like behaviour, followed by a Thouless regime and a high temperature critical
regime. The temperature dependence of the inelastic scattering time found
elsewhere by magnetoresistance data analysis accounts well for the change of
curvature in σ(T ) and the trends observed as R varies. The present results point
to a similar behaviour between quasicrystalline AlPdRe samples and disordered
systems close to the metal–insulator transition, in accordance with our previous
analysis of the very low temperature insulating regime and of the finding of
conductivity scaling laws.

1. Introduction

The icosahedral (i-) alloy Al–Pd–Re is the most resistive quasicrystalline material discovered.
Signature of an insulating behaviour has been reported in the most resistive samples [1–5],
which was unexpected for an ordered alloy composed of metallic elements. In fact such
samples display a strong decrease of the conductivity when the temperature is reduced and the
conductivity value σ can fall below 1 (� cm)−1 at 4 K. Although its microscopic origin is still
debated for this class of materials, the metal–insulator (MI) transition has been described by
many authors [3, 6–9] in a variety of differently prepared samples.

For samples of increasing resistivity, different regimes were observed. They usually
are analysed within the same framework as disordered systems approaching and crossing
a MI transition. For less resistive samples, weak localization combined with electron–
electron interaction effects accounts well for the conductivity dependence versus magnetic
field and temperature. For more resistive samples, weak localization effects break down and
an insulating regime is observed. However, regimes in the intermediate temperature range and
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close to the MI transition have seldom been studied, and in particular the critical regime (see
below) has only been discussed once [7]. Literature values of the transport parameters and the
sample resistive characteristics around the transition and further on the insulating side vary
widely. Differences in the sample preparation (melt-spun ribbons [2, 3], thin films [9] or cast
ingots [1, 5]) could actually yield various structural or chemical microscopic characteristics.
Indeed, it is well known that close to a metal–insulator transition, the low temperature resistivity
varies significantly with minute changes of microscopic parameters. Another reason is that it
can be misleading to analyse data in a reduced temperature range or for a series of samples in
a limited resistivity range.

In this context, it is essential to study samples not only made by the same preparation
process but also over a significant resistivity range on both sides of the metal–insulator
transition. Only this can provide a systematic way to reveal a convincing pattern in a
system with too many unknown characteristics. For quasicrystals, indeed, we do not have
the equivalent of a well defined disorder parameter, like for instance the doping concentration
in a highly doped disordered semiconductor or the volume fraction of metal to insulator in
granular systems, both of which are driving parameters for the MI transition in these systems.

In several previous articles, we have reported on conductivity measurements for similarly
prepared i-AlPdRe samples, exploring the two ends of our available resistivity range. The
less resistive samples, far into the metallic regime, show the effects of weak localization and
its breakdown [10] on the magnetoresistance. For the most resistive samples, well into the
insulating regime, we have reported [4] on an insulating-like behaviour for the conductivity for
temperatures below 1 K. The transition between the two regimes was analysed [7] for metallic
samples by a scaling law of the conductivity. The latter articles [4, 7, 10] reach the same
conclusion, namely that the set of curves σ(T, R) of i-AlPdRe ribbons are similar to what
is observed and predicted for disordered systems close to the Mott–Anderson MI transition.
This was realized before [11, 12] in less resistive quasicrystalline alloys, such as i-AlCuFe and
i-AlPdMn.

With the present paper, we complete the study of the insulating samples by the analysis of
the temperature dependence of their conductivity in a broad temperature range (between 20 mK
and 300 K) and for samples over a large conductivity range. The i-AlPdRe melt spun ribbons
all have the same nominal composition Al70.5Pd21Re8.5 (which is an average composition that
may differ slightly from the actual one [13]). As already discussed [4, 7], there is a univocal
relation between the resistance and its temperature dependence (the lower σ , the higher R), so
that the samples are classified and labelled according to their resistance ratio R = ρ4 K/ρ300 K.
For our melt-spun ribbons, R values ranged from R = 2 to 209. The ratio R = 209 is the
highest obtained so far for ribbons and is of the same magnitude as the highest published value
(R = 280 in i-AlPdRe ingots [14]). The MI transition was located [7] in our set of samples
around R � 16, and thus we focus here on insulating samples with R = 17–209.

General conductivity trends for our samples are described in section 2. The models used
for disordered systems, and especially for disordered weak insulators, are then presented in
section 3. We show in section 4 that our set of curves σ(T, R) can be understood with such
models. In particular, the possible roles of critical and Thouless regimes are underlined. The
question of a specific quasicrystalline feature is also addressed together with the role of disorder
in these highly resistive quasicrystalline alloys.

2. Overview of σ(T ) as a function of the conductivity ratio R

2.1. Experimental details
The i-AlPdRe samples measured here are ribbons obtained by melt-spinning and of nominal
composition Al70.5Pd21Re8.5. Post-quenching annealing is performed up to 950–1010 ◦C (the
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Table 1. Parameters of the measured ribbons: resistance ratio R = ρ4 K/ρ300 K; conductivity
valueσ at 4 and 300 K; temperature range of the measurements �T ; the T ∗ temperatures correspond
to inflexions in the σ(T ) dependence (see text for details); α and σ0 are parameters of a σ0 + σ1T α

fit performed between 300 K and T ∗
2 (or �20 K when T ∗

2 is not defined). The uncertainty on σ0

is around 0.2 (� cm)−1 and therefore the negative value obtained for the sample R = 175 is not
significant.

R σ4 K (� cm)−1 σ300 K (� cm)−1 �T (K) T ∗
0 (K) T ∗

1 (K) T ∗
2 (K) α σ0 (� cm)−1

2.37 170 403 2.5–300 0.97 167
5.83 53.7 313 2.5–300 50 1.02 58.8

14.1 18.2 257 0.4–300 50 1.09 24.2
16.6 15.0 249 0.4–300 50 1.11 19.6

�17 14.6 248 0.02–5 0.2
17.9 13.7 245 0.4–300 <0.4 50 1.13 19.8
21.8 10.8 236 0.4–300 <0.4 40 1.13 15.6
29.3 7.63 224 0.4–300 <0.4 30 1.14 10.6
65.7 2.98 196 0.4–300 1.5 20 1.25 3.7

�67 2.91 195 0.02–5 0.2 1.5
81.7 2.32 189 0.4–300 2 10 1.28 2.2

128 1.39 178 0.02–300 0.75 1.51 0.8
150 1.16 174 2.5–300 1.66 1.3
175 0.97 170 2.5–300 1.51 −0.1

�209 0.79 166 0.02–5 1

maximum temperature changes the R distribution [13]). Representative ribbons have been
characterized chemically and structurally. The chemical composition is homogeneous within
the ribbons (fluctuations are of the order of 0.5 at.% for the different chemical elements) and
sharp x-ray diffraction peaks reflect a high quality quasicrystalline order [13].

Conductivity measurements were performed in three different cryostats: a home-made
cryostat for the range 2.5–300 K; an He3 cryostat for the range 0.4–10 K; and a dilution
cryostat between 20 mK and 5 K. Details of the conductivity set-up measurements can be
found in [4, 7].

Since the absolute value of the conductivity can only be roughly estimated in an irregularly
shaped sample, it was deduced [13] from an empirical relation between the resistance ratio
R = ρ4 K/ρ300 K (that could be precisely measured) and the conductivity at 300 K. A
summary of the sample parameters, temperature range of the measurement and characteristic
temperatures used for the analysis (defined below) are summarized in table 1.

2.2. General description of the conductivity σ(T )

The main features of the conductivity data σ(T, R) are presented in figures 1–3. In the
following, we will call the positive (negative) concavity region the region of the curves where
d2σ/dT 2 > 0 (d2σ/dT 2 < 0), respectively.

Above �100 K, it is clear from figure 1 that all the curves σ(T, R) are roughly parallel to
each other, independently of their insulating or metallic character. Looking more closely
between 300 and 30 K, it appears that the curves evolve from a linear T dependence
(σ(T ) = σ0 + σ1T ) for the ribbons of lowest R (R � 2–5), towards a dependence of the form

σ(T ) = σ0 + σ1T α (1)

for samples of higher R (α > 1). The exponent α increases steadily with R up to α � 3/2,
with even an exponent 1.7 in a ribbon with R = 150 (see table 1).
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Figure 1. The temperature dependence of the conductivity σ(T, R), in the range 2.5–300 K, for
ribbons with R = 2.37, 5.83, 29.3 and 175 (from top to bottom).

Figure 2. The temperature dependence of the conductivity σ(T, R), in the range 0.4 (or 2.5 K)–
30 K, for ribbons with R = 14.1, 29.3 and 65.7 (left-hand panel) and R = 81.7 and 175 (right-hand
panel).

Figure 3. The temperature dependence of the conductivity σ(T, R) normalized at 1 K, with T
between 20 mK and 1 K, for ribbons R = 209, 67 and 17 (from top to bottom).

Between 30 and 1 K (figure 2) and for intermediate resistance ratios (5 < R < 80) a
concavity change occurs, from positive at high temperature to negative at low temperature.
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This concavity change defines a first characteristic temperature, labelled T ∗
2 . This temperature

does not evolve significantly across the MI transition and it goes from 50 K for R � 5 down
to 10 K for R � 80 (see table 1).

Below 1 K (see figure 3) and on the insulating side of the MI transition (i.e. R > 16), a
plateau appears. By plateau we mean a region with a reduced T dependence for the conductivity
and that extrapolates to a finite σ value at zero temperature. This plateau might also be
present on the metallic side of the transition but at a much lower temperature, since it was not
observed on metallic ribbons down to 400 mK. For the samples where T ∗

2 is defined, the plateau
onset induces another change of concavity from negative to positive when the temperature is
lowered. This new inflexion point, which ends the negative concavity region, defines a second
characteristic temperature T ∗

1 . We emphasize that this plateau is not due to thermalization
issues, since it appears at as high as 200 mK for a sample of R � 17. It was shown in [15]
that cooling is efficient in our experiment down to 20 mK. The temperature T ∗

1 increases with
the resistance ratio R from 200 mK at the MI transition (R = 17) up to 2 K for the last sample
where a negative concavity region could be defined (R = 81.7).

This plateau is followed at even lower temperatures by a further decrease of the
conductivity, which plummets as T goes to zero. Such a decrease is not visible in the sample
with R = 17 but it clearly appears for R = 67. This new inflexion point, labelled T ∗

0 , is
present in all the insulating ribbons and marks the transition between the plateau and the very
low temperature decrease. T ∗

0 increases with R, with T ∗
0 = 200 mK, 750 mK and 1 K in

samples with R = 67, 128 and 209 respectively.
A schematic drawing of σ(T ) curves is presented for ribbons with R � 60 and 100 in

figure 4. The different transport regimes proposed in the next section are also reported.

3. Models in disordered systems

Theories for disordered systems predict that close to the MI transition,and at finite temperature,
the conductivity of a disordered system is determined by the ratio of two lengths: LT and ξ .
LT is the inelastic scattering length at temperature T and ξ is either the correlation length
on the metallic side of the MI transition or the localization length on the insulating side. LT

decreases with increasing temperature, and in general LT can also depend on parameters such
as the presence of magnetic impurities, frequency, etc. We can distinguish three regimes. The
critical regime of the MI transition is characterized by LT < ξ , whereas the metallic and
insulating regimes correspond to LT > ξ . Physically the metallic and insulating regime can
only be discriminated for lengths larger than ξ , where the full electronic pattern has developed.
In other words, if LT < ξ the metallic and insulating regime cannot be distinguished (for the
same LT ) [16], and the predicted temperature dependence of conductivity is symmetrical on
both sides close to the transition. Note that the following models are valid only for length
scales larger than the elastic mean free path Lel.

3.1. The metallic side of the MI transition

3.1.1. Metallic regime. For LT > ξ (T < T1) the conductivity can be written [17, 18]

σ(T ) = e2

h̄

(
A

ξ
+

B

LT

)
(2)

where A and B are two constants close to unity. In this regime, the usual relation LT =
(D∞τT )1/2 is valid, with D∞ the diffusion constant at zero temperature and τT the inelastic
scattering time. The term proportional to 1/ξ corresponds to the residual conductivity at zero
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Figure 4. A schematic drawing of the curve σ(T ) and characteristic temperatures T ∗
2 , T ∗

1 and
T ∗

0 . Top panel: a hypothetical ribbon with R � 60. Bottom panel: a ribbon with R � 100. The
temperature range for the different regimes proposed (see the text) is reported.

temperature. According to the scaling theory without interactions [19], ξ goes to infinity when
the MI transition is approached, and the residual conductivity goes to zero continuously. The
term proportional to 1/LT contains the temperature dependence of the conductivity.

3.1.2. Critical regime. If LT < ξ (T > T1), equation (2) remains valid but the second term
becomes dominant. The effective diffusion coefficient is now temperature dependent, which
leads to the relation LT = (D∞ξτT )1/3. The temperature dependent part of the conductivity
is finally given by equation [16, 17]

δσ (T ) = Be2

(Ah̄2)1/3
N(EF)1/3 1

τT
1/3

. (3)

This regime is also called the microscopic diffusion regime. One important prediction is
that if the density of states at the Fermi level is weakly dependent on the disorder parameter
n, then the curves σ(T, n) are parallel to each other for different values of n.

3.2. The insulating side of the MI transition

If LT > ξ , two regimes are possible: the variable range hopping (VRH) and the Thouless
regimes.
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3.2.1. Variable range hopping. If kBT is smaller than the average energy difference between
localized states at distance ξ , then transport occurs via VRH [20]. The basic idea is that an
electron localized on a region of size the order of the localization length ξ may preferentially
hop to localized sites which are close in energy, but not necessarily close spatially. The
localization length ξ is disorder dependent, and the smaller ξ , the lower the conductance, the
more insulating the sample. More specifically, if the density of states is constant on the energy
scale kBT , it can be shown in 3D that [21, 22]

σ(T ) = σ1 exp[−(T0/T )1/4]. (4)

The Mott temperature T0 given by kBT0 � 18/[ξ3 N(EF)] goes to zero at the MI transition.

3.2.2. Thouless regime. In the case where the localization length is large compared with the
distance between two localized sites, Thouless has predicted [23, 24] a particular conduction
mechanism. On each localization site of size the order of ξ , an electron can diffuse up to the
localization length ξ above which diffusion is stopped, by definition of the localization length
ξ . But after a characteristic time τT (the inelastic scattering time) it can hop to another localized
site. The effective diffusion coefficient of this random walk is thus given by D = ξ2/τT . With
the Einstein relation, the conductivity follows

σ(T ) � e2 N(EF)ξ2/τT . (5)

This regime can in principle be experimentally distinguished from the critical regime because
even if N(EF) does not change with disorder, the curves σ(T, n) are not parallel for different n
because the pre-factor is ξ (and thus n) dependent. But if a temperature range such as T > T0

and LT > ξ can in principle always be found close enough to the MI transition, the possibilities
to observe the Thouless regime will depend sharply on the system parameters [25]. Indeed,
such a regime is only seldom reported in experimental studies of the MI transition of disordered
systems.

3.2.3. Critical regime. If LT < ξ , the sample is in the critical regime of the MI transition.
As explained above, no discontinuity is expected in this regime for the curves σ(T, n) across
the MI transition, which are therefore given by equation (3).

3.3. Inelastic mean free path

In order to determine the actual T dependence of σ in the different regimes from the above
relations, we have to know the T dependence of τT . Generally, τT depends on many
processes [17], such as electron–electron scattering, electron–phonon scattering, two level
system processes, scattering on magnetic impurities, etc. The actual dependence is dominated
by the shortest among these characteristic times. The T dependence of τT is usually well
described by an inverse power law, i.e. 1/τT ∝ T p, where the exponent p depends on the
temperature range and the disorder strength.

Electron–electron scattering usually dominates at low temperature (below �30 K). In
non-crystalline materials or materials with short mean free path [21]

1/τT = CT 2 + DT 3/2. (6)

The second term, that does not appear in the usual relation of Landau–Baber (1/τT ∝ T 2),
becomes larger when disorder increases. At higher temperatures, the electron–phonon
scattering dominates and the p exponent depends on the T range: for T > θD (Debye
temperature), 1/τT ∝ T whereas for T < θD, 1/τT ∝ T 3 (weak disorder) or 1/τT ∝ T 4
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(strong disorder) [26]. These expressions are established for disordered metals, and it is
usually assumed that they are still valid across the transition.

Electron–electron interaction effects when disorder is present yield a square root T
dependence of σ at low temperature [27]. This effect can be accounted for by introducing
a new length L int in equation (2) instead of LT ,

L int =
√

h̄ D

kBT
. (7)

This length corresponds physically to the interaction time τint � h̄/kBT .
According to these models we thus expect a variety of shapes for σ(T ), depending on

the dominant inelastic process. Moreover, for a given inelastic process and a given regime,
the temperature dependence is predicted to evolve with disorder. A schematic summary is
presented in figure 5.

4. Discussion

4.1. Interpretation of the conductivity curves

The relevance of disordered systems theories for metallic i-AlPdRe ribbons has already been
emphasized and discussed in previous articles [7, 10]. For ribbons of small R ratio (R = 2–5),
the temperature and magnetic field dependence of conductivity follow, at least qualitatively,
weak localization corrections [10]. For ribbons closer to the MI transition, weak localization
theories breakdown since the low T quantum corrections are no longer small. We have
shown [7] that very close to the transition the σ(T ) dependence can still be described by
disordered systems models provided that the critical regime is taken into account.

Here, we aim at discussing σ(T, R) curves of insulating i-AlPdRe ribbons. We show below
that most of the experimental features can be qualitatively explained within the theoretical
framework presented above, R playing the role of the disorder parameter n.

At high enough temperature, but still in the range LT > Lel, all the samples are expected
to be in the critical regime of the MI transition. This explains that the curves σ(T, R) of
different Rs are parallel around 300 K (assuming that the density of states is only weakly R
dependent across the MI transition). According to equation (3), a power law σ(T ) ∝ T α is
expected, with α = p/3. For electron–phonon scattering, expected to be dominant above
roughly 30 K, p is between 3 and 4, and α is thus between 1 and 4/3 (the Debye temperature
in i-AlPdRe is around 400 K [28]). This agrees well with our observation, except for the most
resistive ribbons (R � 100) which have slightly higher α values in the range 30–300 K. The
slow increase of the exponent α with R may come from a change of p with the resistivity
(i.e. the equivalent of the disorder strength) as it is predicted for disordered systems.

For samples close to the MI transition, the localization length is large and the critical
regime is expected to be dominant down to very low temperatures. Following figure 5, a
critical regime dominated by electron–electron scattering is characterized by an exponent α

between 2/3 and 1/2 (even 1/3 at very low temperatures, under electron–electron interaction
effects). Experimental findings agree with this picture since a negative concavity region,
i.e. a range of temperature with a local exponent α below 1, is observed between T ∗

2 and T ∗
1 .

Then T ∗
2 would determine the transition between an electron–electron and an electron–phonon

dominated scattering, whereas T ∗
1 marks the end of the high temperature critical regime and the

onset of the Thouless regime (see below). The T ∗
2 values of table 1 are found between 10 and

50 K, which is consistent with the general consensus for the temperature range where scattering
is dominated by electron–phonon effects. Note that for samples of higher R, ξ decreases, and
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Figure 5. A summary of the relations between σ and τT and between 1/τT and temperature. Top
panel: different regimes expected on the metallic side of the MI transition. Middle panel: different
regimes expected on the insulating side. Bottom panel: the temperature dependence of 1/τT as a
function of temperature and disorder strength.

for a similar LT , the critical regime is shifted to a higher temperature range,where the dominant
scattering mechanism is expected to be electron–phonon type. This naturally explains why,
for high enough R, a negative exponent is not observed in the conductivity for this temperature
range (T1 > T ∗

2 ).
For samples deeper in the insulating state, the insulating regime is expected to develop

more and more clearly at low temperatures. We propose that the positive concavity in the
intermediate temperature range above T ∗

0 corresponding to the plateau (see also figure 5) is
due to the Thouless regime. Indeed, a Thouless regime is characterized by power laws with an
exponent α between 1 (low temperature electron–electron interaction), and 2 (intermediate
temperature electron–electron scattering) or even 3 (higher temperature electron–phonon
scattering) depending on the inelastic process considered. For instance, in the case of strong
disorder and electron–electron scattering, σ(T ) = CT 3/2 + DT 2 is predicted in the Thouless
regime. This σ(T ) law fits well the conductivity of a ribbon with R = 175, as shown in
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Figure 6. The conductivity σ(T ) for a ribbon with R = 175 between 2.5 and 50 K. The continuous
curve corresponds to the fit σ(T ) = σ0 + σ1T 3/2 + σ2T 2, with σ0 = 0.84, σ1 = 0.025 and
σ2 = 0.0065 (σ in (� cm)−1 and T in K).

figure 6 for an intermediate temperature range (3–50 K). We must include in the fit a constant
σ0 which was also mentioned in disordered systems analysis [25] and the significance of
which is still unclear. Within the Anderson MI transition picture, this constant might come
from a high temperature contribution of extended states lying beyond the mobility edge. The
limit between the Thouless regime and the critical electron–phonon scattering regime is not
clearly defined. Indeed, the exponent might become larger entering the electron–phonon range
(around 3) if the sample stays in the Thouless regime or slower if it enters into the critical regime.
Experimentally, the exponent is almost constant with temperature, around 1.5, which seems
to indicate that highly resistive ribbons no longer follow the Thouless regime around 300 K.

Lastly, the very low temperature decrease below T ∗
0 was interpreted as the onset of a

variable range hopping regime. The parameters extracted from the fit are quite unusual for the
validity range of the theory [4] (very large localization lengths, T > T0). Such a problem is
also observed in some disordered insulators very close to the transition [29]. Note that there is
no conductivity constant added for the Mott’s law fit: the sample can truly be classified as an
insulator. In any case, the transition temperature T ∗

0 and the Mott’s temperature T0 that could
be extracted from the fits increase with R, as expected from the model.

4.2. Comparison with other experimental results

4.2.1. Disordered systems experiments. Our main emphasis here is the strong similarity
between the σ(T ) behaviour in our insulating i-AlPdRe ribbons and in disordered systems.
This was already pointed out for the crossing of the transition [7] and for insulating samples
at very low temperature [4] (T < 1 K), and we have shown here it is also true in the higher
temperature range 1–300 K. For disordered systems, one of the most thorough conductivity
studies was performed in In–O disordered films [25]. These films have been measured and
analysed extensively on both sides of the MI transition. The σ(T, n) curves of this disorder
system are barely distinguishable from the σ(T, R) curves of i-AlPdRe ribbons. In In–O
samples and close to the MI transition, the σ(T, n) curves are roughly parallel to each other
and linear at high enough temperature. Deeper in the insulating regime, the curves are no
longer parallel but are characterized by power laws AT 3/2 + BT 3 between 50 and 300 K,
which is attributed to the Thouless regime. The first term comes from the electron–electron
scattering contribution, and the second from the electron–phonon scattering. A constant σ0 is
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also introduced. At lower temperature, the authors also report a plateau-like conductivity, with
a finite conductivity extrapolation at 0 K and a rapid further decrease of the conductivity at even
lower temperatures described by Mott’s law. In this system, the extracted Mott temperature
T0 stays above the maximum temperature of the Mott’s law fit.

Other systems share many characteristics with i-AlPdRe ribbons, although the details can
differ slightly from one system to an other. For example, the increase of the exponent α with
the resistivity reported in table 1 is also obtained in bronze samples [30].

4.2.2. Other experiments on i-AlPdRe insulating samples. Most of the measurements on
i-AlPdRe samples have focused on the low temperature range (below 20 K) and the whole
temperature range up to 300 K is less often discussed.

Close to the MI transition and on the insulating side, the conductivity curves σ(T )

measured on different types of samples are all very similar. But the interpretations differ
according to the authors. Very often, and contrary to what is proposed here, the low temperature
negative concavity region (between T ∗

1 and T ∗
2 ) is not analysed in terms of the critical regime

but is attributed to Mott’s VRH law [8, 9]. The main drawback of this interpretation is that
it does not respect the symmetry across the transition. Namely, critical conductivity laws
if present close to the MI transition on the metallic side must also be observed close to the
transition on the insulating side. Moreover, if this negative range is due to VRH, how can we
explain the further decrease of the conductivity observed at very low temperature when R is
increased? Lastly, a constant was added to Mott’s law in order to fit the data. Its physical
meaning is still unexplained. In our view, the problem is the limited temperature range (not
more than one decade) where conductivity data are fitted with Mott’s law. This is indeed not
broad enough to discriminate a Mott’s law from a power law temperature dependence [15].

For more resistive samples (higher R), significant differences between σ(T ) curves of
ribbons and ingots of same R are reported at low temperatures [31–33]. Comparison between
the different samples then becomes difficult. We have suggested that these differences come
from differences in chemical homogeneity [31]. Scanning electron microscope investigations
have shown that ingots contain a large proportion of holes and suffer important chemical non-
homogeneity. Our ribbons are instead not porous and more homogeneous [34], but careful
chemical analysis reveals a small chemical gradient (around 0.5 at.%) in their thickness. If
we assume a strong sensitivity of the low temperature conductivity to chemical composition,
by similarity with doping in disordered insulators, the small gradient in the thickness of the
ribbons may induce a different temperature dependence for the whole conductivity than the
scattered and random chemical inhomogeneities of the ingots. Similar problems were also
observed in disordered systems. For example, in Ni–Si amorphous samples made by different
groups, the differences in σ(T ) curves were supposed to come from sample homogeneity or
oxidation [35].

Magnetoconductivity data at low temperature of insulating i-AlPdRe samples are in
agreement with what is found in disordered insulating systems [3, 36, 37]. Detailed
analyses [33, 38, 39] based on disordered systems theories have been proposed. But
it is difficult to validate or invalidate our interpretation from these studies since the
magnetoconductivity problem is not fully solved even in conventional disordered systems.
However, magnetoconductivity data of metallic i-AlPdRe samples are well described by weak
localization theories (R < 10) [10]. It is found that τT between 40 mK and 4 K follows the
law τT ∝ T p with p � 1.1–1.5, which is in agreement with the values of p used in our
interpretation of insulating σ(T, R) curves.

In the temperature range 30–300 K, the power law equation (1) reported here was also
mentioned by other authors [3, 5, 6]. They all obtain similar α values and an increase of α
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from 1 to roughly 1.5 with R. This power law is sometimes interpreted as the signature of a
quasicrystalline specific regime (see below).

4.3. Quasicrystalline specificity?

Specific quasicrystalline models have been proposed for the conductivity. From a
phenomenological point of view, conductivity has been proposed [40] to arise from a hopping
mechanism with a rate τ (T ) between electron confining entities of typical size L0. This can
be also viewed as an interband scattering mechanism. This yields

σ(T ) = e2 N(EF)
L2

0

τ (T )
, (8)

where 1/τ(T ) = 1/τel + 1/τT , τel being the elastic scattering time. Equation (8) gives
an explanation for the unusual relation between the amount of structural defects and the
conductivity value in highly resistive icosahedral alloys. Namely, the conductivity decreases
when the structural quality is improved as shown in i-AlCuFe and i-AlPdMn [40]. Relation (8)
is close to that of the Thouless regime, since the microscopic processes are similar. In the case
where N(EF) is independent of composition and disorder, relation (8) would yield parallel
σ(T ) for different defect levels, contrary to the Thouless regime. Indeed, this law was used
in i-AlCuFe [40] and i-AlPdMn systems [41], in order to explain the parallelism of the curves
from 100 K up to high temperatures.

Numerical and exact calculations on quasiperiodic systems have shown that electronic
wavepackets spread anomalously [42, 43]. As in the critical regime discussed previously, it is
equivalent to a length scale dependent diffusion coefficient D = AτT

2β−1. Here β depends
on the parameters of the system and the energy considered. Einstein’s law gives the so-called
generalized Drude law:

σ(T ) ∝ τT
2β−1. (9)

We point out that these two specific quasicrystalline models do not take into account
interference effects due to disorder (chemical or structural) which will always be present in
any actual sample. In fact, these models are valid [44] for length scales smaller than the elastic
mean free path Lel, which is precisely the range where disordered systems models do not apply.
The condition LT = Lel gives some crossover temperature TQC, below which the sample
should behave like in a disordered system, and above which it could follow QC laws. Such
a temperature is unfortunately unknown. In i-AlCuFe ribbons, quantum interference effects
in the weak localization regime seem to describe [11] the magnetic field and temperature
dependence of conductivity up to �100 K. Estimates of the elastic mean free path [44] give
values as low as �20 Å, which is of the order of the elementary clusters of the structure and
which questions the existence of the quasicrystalline specific regime. For example, the density
of states of highly resistive icosahedral samples is disordered like at least up to 100 meV
in energy [44]. Above 300 K, other phenomena, like atomic vibrations around equilibrium
positions (Debye–Waller mechanism), will play a leading role in the temperature increase of
the conductivity [12, 45].

An alternative explanation to ours can be worked out within the theoretical quasicrystalline
framework. We have to assume that TQC lies in our measurement range, and that similarly [40]
to i-AlCuFe, the higher the structural order the lower the conductivity. At high enough
temperature (T > TQC) the σ(T, R) curves are parallel, following equation (8). At low
temperature, all samples are disordered-like (long length scales) and the interpretation of
section 4.1 remains valid. In the intermediate temperature, the more disordered ribbons (of
lesser resistivity) become disordered-like, but the high resistive ribbons (more ordered) could
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still be in the non-disordered QC regime: the power law dependence observed from 10 up to
100 K for ribbons around R � 100 would then be attributed to QC laws like equation (9), as
has been suggested by some authors [46, 47]. However, such a description relies on speculative
assumptions in i-AlPdRe like the change of Lel with R and TQC values below 300 K.

5. Summary

In conclusion, a coherent interpretation of the set of curves σ(T, R) for i-AlPdRe ribbons
with T = 20 mK–300 K and R = 2–200 is proposed. Insulating samples are especially
discussed (R = 16–200). The strong similarities with disordered systems close to the Mott–
Anderson MI transition is emphasized. The critical and the Thouless regimes, that are concepts
developed for disordered systems, are the key ingredients of this interpretation. Our results
agree with previous studies focusing on the analysis of metallic samples. No convincing
evidence for a specific quasicrystalline insulating behaviour is found in the temperature range
investigated. Icosahedral order is certainly essential in order to permit a strong localization
in i-AlPdRe samples, but disordered-like quantum effects seem ultimately responsible for the
strong variations of conductivity with temperature.
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[35] Möbius A, Frenzel C, Thielsch R, Rosenbaum R, Adkins C J, Schreiber M, Bauer H D, Grötzchel R, Hoffman V,
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and A Sadoc (Singapore: World Scientific) p 412 and reference therein
[43] Fujiwara T 1999 Physical Properties of Quasicrystals (Springer Series in Solid-State Sciences vol 126) ed

Z M Stadnink (Berlin: Springer) p 169 and references therein
[44] Delahaye J, Schaub T, Berger C and Calvayrac Y 2003 Phys. Rev. B 67 214201
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